1. Name of the medicinal product

Methylprednisolone Sodium Succinate for Injection USP 40mg Taj Pharma.
Methylprednisolone Sodium Succinate for Injection USP 125mg Taj Pharma.

Methylprednisolone Sodium Succinate for Injection USP 500mg Taj Pharma.
Methylprednisolone Sodium Succinate for Injection USP 1g  Taj Pharma.

  1. Qualitative and quantitative composition

a) Methylprednisolone Sodium Succinate for Injection USP 40mg
Each ml contains:
Methylprednisolone Sodium Succinate USP is equivalent to            40mg

b) Methylprednisolone Sodium Succinate for Injection USP 125mg
Each ml contains:
Methylprednisolone Sodium Succinate USP is equivalent to           125mg

c) Methylprednisolone Sodium Succinate for Injection USP 500mg
Each ml contains:
Methylprednisolone Sodium Succinate USP is equivalent to           500mg

d) Methylprednisolone Sodium Succinate for Injection USP 1g
Each ml contains:
Methylprednisolone Sodium Succinate USP is equivalent to                 1g

For the full list of excipients, see section 6.1.

  1. Pharmaceutical form

Powder for injection.

  1. Clinical particulars

4.1 Therapeutic indications

Methylprednisolone Sodium Succinate is indicated to treat any condition in which rapid and intense corticosteroid effect is required such as:

1.Dermatological disease

Severe erythema multiforme (Stevens-Johnson syndrome)

2.Allergic states

Bronchial asthma

Angioneurotic oedema


3.Gastro-intestinal diseases

Ulcerative colitis

Crohn’s disease

4.Respiratory diseases

Aspiration of gastric contents

Fulminating or disseminated tuberculosis (with appropriate anti-tuberculous chemotherapy)

5.Neurological disorders

Cerebral oedema secondary to cerebral tumour

Acute exacerbations of multiple sclerosis superimposed on a relapsing-remitting background


T.B. meningitis (with appropriate antituberculous chemotherapy)


4.2 Posology and method of administration

Methylprednisolone Sodium Succinate may be administered intravenously or intramuscularly, the preferred method for emergency use being intravenous injection given over a suitable time interval. When administering Methylprednisolone Sodium Succinate in high doses intravenously it should be given over a period of at least 30 minutes. Doses up to 250 mg should be given intravenously over a period of at least five minutes.

For intravenous infusion the initially prepared solution may be diluted with 5% dextrose in water, isotonic saline solution, or 5% dextrose in isotonic saline solution. To avoid compatibility problems with other drugs Methylprednisolone Sodium Succinate should be administered separately, only in the solutions mentioned.

Undesirable effects may be minimised by using the lowest effective dose for the minimum period (see section 4.4).

Parenteral drug products should wherever possible be visually inspected for particulate matter and discoloration prior to administration.


Dosage should be varied according to the severity of the condition, initial dosage will vary from 10 to 500 mg. In the treatment of graft rejection reactions following transplantation, a dose of up to 1 g/day may be required. Although doses and protocols have varied in studies using methylprednisolone sodium succinate in the treatment of graft rejection reactions, the published literature supports the use of doses of this level, with 500 mg to 1 g most commonly used for acute rejection. Treatment at these doses should be limited to a 48-72 hour period until the patient’s condition has stabilised, as prolonged high dose corticosteroid therapy can cause serious corticosteroid induced side-effects (see section 4.4 and section 4.8).

Paediatric population:

In the treatment of high dose indications, such as haematological, rheumatic, renal and dermatological conditions, a dosage of 30 mg/kg/day to a maximum of 1 g/day is recommended. This dosage may be repeated for three pulses either daily or on alternate days. In the treatment of graft rejection reactions following transplantation, a dosage of 10 to 20 mg/kg/day for up to 3 days, to a maximum of 1 g/day, is recommended. In the treatment of status asthmaticus, a dosage of 1 to 4 mg/kg/day for 1-3 days is recommended.

Elderly patients:

Methylprednisolone Sodium Succinate is primarily used in acute short-term conditions. There is no information to suggest that a change in dosage is warranted in the elderly. However, treatment of elderly patients should be planned bearing in mind the more serious consequences of the common side-effects of corticosteroids in old age and close clinical supervision is required (see section 4.4).

Detailed recommendations for adult dosage are as follows:

In anaphylactic reactions adrenaline or noradrenaline should be administered first for an immediate haemodynamic effect, followed by intravenous injection of Methylprednisolone Sodium Succinate (methylprednisolone sodium succinate) with other accepted procedures. There is evidence that corticosteroids through their prolonged haemodynamic effect are of value in preventing recurrent attacks of acute anaphylactic reactions.

In sensitivity reactions Methylprednisolone Sodium Succinate is capable of providing relief within one half to two hours. In patients with status asthmaticus Methylprednisolone Sodium Succinate may be given at a dose of 40 mg intravenously, repeated as dictated by patient response. In some asthmatic patients it may be advantageous to administer by slow intravenous drip over a period of hours.

In graft rejection reactions following transplantation doses of up to 1 g per day have been used to suppress rejection crises, with doses of 500 mg to 1 g most commonly used for acute rejection. Treatment should be continued only until the patient’s condition has stabilised; usually not beyond 48-72 hours.

In cerebral oedema corticosteroids are used to reduce or prevent the cerebral oedema associated with brain tumours (primary or metastatic).

In patients with oedema due to tumour, tapering the dose of corticosteroid appears to be important in order to avoid a rebound increase in intracranial pressure. If brain swelling does occur as the dose is reduced (intracranial bleeding having been ruled out), restart larger and more frequent doses parenterally. Patients with certain malignancies may need to remain on oral corticosteroid therapy for months or even life. Similar or higher doses may be helpful to control oedema during radiation therapy.

The following are suggested dosage schedules for oedemas due to brain tumour.

Schedule A (1)Dose (mg)RouteInterval in hoursDuration
During Surgery:20 to 40IVhourly
Post-operative:20IM324 hours
16IM324 hours
12IM324 hours
8IM324 hours
4IM324 hours
4IM624 hours
4IM1224 hours
Schedule B (2)Dose (mg)RouteInterval in hoursDays Duration

Aim to discontinue therapy after a total of 10 days.


  1. Fox JL, MD. “Use of Methylprednisolone in Intracranial Surgery” Medical Annals of the District of Columbia, 34:261-265,1965.
  2. Cantu RC, MD Harvard Neurological Service, Boston, Massachusetts. Letter on file, The Upjohn Company (February 1970).

In the treatment of acute exacerbations of multiple sclerosis in adults, the recommended dose is 1 g daily for 3 days. Methylprednisolone Sodium Succinate should be given as an intravenous infusion over at least 30 minutes.

In other indications, initial dosage will vary from 10 to 500 mg depending on the clinical problem being treated. Larger doses may be required for short-term management of severe, acute conditions. The initial dose, up to 250 mg, should be given intravenously over a period of at least 5 minutes, doses exceeding 250 mg should be given intravenously over a period of at least 30 minutes. Subsequent doses may be given intravenously or intramuscularly at intervals dictated by the patient’s response and clinical condition. Corticosteroid therapy is an adjunct to, and not replacement for, conventional therapy.

4.3 Contraindications

Methylprednisolone Sodium Succinate is contraindicated:

  • in patients who have systemic fungal infections unless specific anti-infective therapy is employed and in cerebral oedema in malaria.
  • in patients with known hypersensitivity to methylprednisolone or to any of the excipients listed in section 6.1.
  • for use by the intrathecal route of administration.

Administration of live or live, attenuated vaccines is contraindicated in patients receiving immunosuppressive doses of corticosteroids.

4.4 Special warnings and precautions for use

Immunosuppressant Effects/Increased Susceptibility to Infections

Corticosteroids may increase susceptibility to infection, may mask some signs of infection, and new infections may appear during their use. Suppression of the inflammatory response and immune function increases the susceptibility to fungal, viral and bacterial infections and their severity. The clinical presentation may often be atypical and may reach an advanced stage before being recognised.

Persons who are on drugs which suppress the immune system are more susceptible to infections than healthy individuals. Chicken pox and measles, for example, can have a more serious or even fatal course in non-immune children or adults on corticosteroids.

Chickenpox is of serious concern since this normally minor illness may be fatal in immunosuppressed patients. Patients (or parents of children) without a definite history of chickenpox should be advised to avoid close personal contact with chickenpox or herpes zoster and if exposed they should seek urgent medical attention. Passive immunization with varicella/zoster immunoglobin (VZIG) is needed by exposed non-immune patients who are receiving systemic corticosteroids or who have used them within the previous 3 months; this should be given within 10 days of exposure to chickenpox. If a diagnosis of chickenpox is confirmed, the illness warrants specialist care and urgent treatment. Corticosteroids should not be stopped and the dose may need to be increased.

Exposure to measles should be avoided. Medical advice should be sought immediately if exposure occurs. Prophylaxis with normal intramuscular immunoglobulin may be needed.

Similarly, corticosteroids should be used with great care in patients with known or suspected parasitic infections such as Strongyloides (threadworm) infestation, which may lead to Strongyloides hyperinfection and dissemination with widespread larval migration, often accompanied by severe enterocolitis and potentially fatal gram-negative septicemia.

Live vaccines should not be given to individuals with impaired immune responsiveness. The antibody response to other vaccines may be diminished.

The use of corticosteroids in active tuberculosis should be restricted to those cases of fulminating or disseminated tuberculosis in which the corticosteroid is used for the management of the disease in conjunction with an appropriate anti-tuberculous regimen.

If corticosteroids are indicated in patients with latent tuberculosis or tuberculin reactivity, close observation is necessary as reactivation of the disease may occur. During prolonged corticosteroid therapy, these patients should receive chemoprophylaxis.

Kaposi’s sarcoma has been reported to occur in patients receiving corticosteroid therapy. Discontinuation of corticosteroids may result in clinical remission.

Although Methylprednisolone Sodium Succinate is not approved in the UK for use in any shock indication, the following warning statement should be adhered to. Data from a clinical study conducted to establish the efficacy of Methylprednisolone Sodium Succinate in septic shock, suggest that a higher mortality occurred in subsets of patients who entered the study with elevated serum creatinine levels or who developed a secondary infection after therapy began. Therefore this product should not be used in the treatment of septic syndrome or septic shock.

The role of corticosteroids in septic shock has been controversial, with early studies reporting both beneficial and detrimental effects. More recently, supplemental corticosteroids have been suggested to be beneficial in patients with established septic shock who exhibit adrenal insufficiency. However, their routine use in septic shock is not recommended. A systematic review of short-course, high-dose corticosteroids did not support their use. However, meta-analyses, and a review suggest that longer courses (5-11 days) of low-dose corticosteroids might reduce mortality, especially in patients with vasopressor-dependent septic shock.

Immune System Effects

Allergic reactions may occur. Rarely skin reactions and anaphylactic/anaphylactoid reactions have been reported following parenteral Methylprednisolone Sodium Succinate therapy. Physicians using the drug should be prepared to deal with such a possibility. Appropriate precautionary measures should be taken prior to administration, especially when the patient has a history of drug allergy.

Endocrine Effects

In patients on corticosteroid therapy subjected to unusual stress, increased dosage of rapidly acting corticosteroids before, during and after the stressful situation is indicated.

Pharmacologic doses of corticosteroids administered for prolonged periods may result in hypothalamic-pituitary-adrenal (HPA) suppression (secondary adrenocortical insufficiency). The degree and duration of adrenocortical insufficiency produced is variable among patients and depends on the dose, frequency, time of administration, and duration of glucocorticoid therapy. This effect may be minimized by use of alternate-day therapy.

In addition, acute adrenal insufficiency leading to a fatal outcome may occur if glucocorticoids are withdrawn abruptly.

In patients who have received more than physiological doses of systemic corticosteroids (approximately 6 mg methylprednisolone) for greater than 3 weeks, withdrawal should not be abrupt.

Drug-induced secondary adrenocortical insufficiency may therefore be minimized by gradual reduction of dosage. How dose reduction should be carried out depends largely on whether the disease is likely to relapse as the dose of systemic corticosteroids is reduced. Clinical assessment of disease activity may be needed during withdrawal. If the disease is unlikely to relapse on withdrawal of systemic corticosteroids, but there is uncertainty about HPA suppression, the dose of systemic corticosteroid may be reduced rapidly to physiological doses. Once a daily dose of 6 mg methylprednisolone is reached, dose reduction should be slower to allow the HPA-axis to recover.

Abrupt withdrawal of systemic corticosteroid treatment, which has continued up to 3 weeks is appropriate if it considered that the disease is unlikely to relapse. Abrupt withdrawal of doses up to 32 mg daily of methylprednisolone for 3 weeks is unlikely to lead to clinically relevant HPA-axis suppression, in the majority of patients. In the following patient groups, gradual withdrawal of systemic corticosteroid therapy should be considered even after courses lasting 3 weeks or less:

  • Patients who have had repeated courses of systemic corticosteroids, particularly if taken for greater than 3 weeks.
  • When a short course has been prescribed within one year of cessation of long-term therapy (months or years).
  • Patients who may have reasons for adrenocortical insufficiency other than exogenous corticosteroid therapy.
  • Patients receiving doses of systemic corticosteroid greater than 32 mg daily of methylprednisolone.
  • Patients repeatedly taking doses in the evening.

Patients should carry ‘Steroid Treatment’ cards which give clear guidance on the precautions to be taken to minimise risk and which provide details of prescriber, drug, dosage and the duration of treatment.

This type of relative insufficiency may persist for months after discontinuation of therapy; therefore, in any situation of stress occurring during that period, hormone therapy should be reinstituted.

A steroid “withdrawal syndrome”, seemingly unrelated to adrenocortical insufficiency, may also occur following abrupt discontinuance of glucocorticoids. This syndrome includes symptoms such as: anorexia, nausea, vomiting, lethargy, headache, fever, joint pain, desquamation, myalgia, weight loss, and/or hypotension. These effects are thought to be due to the sudden change in glucocorticoid concentration rather than to low corticosteroid levels.

Because glucocorticoids can produce or aggravate Cushing’s syndrome, glucocorticoids should be avoided in patients with Cushing’s disease.

There is an enhanced effect of corticosteroids on patients with hypothyroidism. Frequent patient monitoring is necessary in patients with hypothyroidism.

Metabolism and Nutrition

Frequent patient monitoring is necessary in patients with diabetes mellitus (or a family history of diabetes). Corticosteroids, including methylprednisolone, can increase blood glucose, worsen pre-existing diabetes, and predispose those on long-term corticosteroid therapy to diabetes mellitus.

Psychiatric Effects

Patients and/or carers should be warned that potentially severe psychiatric adverse reactions may occur with systemic steroids (see section 4.8). Symptoms typically emerge within a few days or weeks of starting treatment. Risks may be higher with high doses/systemic exposure (see also section 4.5), although dose levels do not allow prediction of the onset, type, severity or duration of reactions. Most reactions recover after either dose reduction or withdrawal, although specific treatment may be necessary. Patients/carers should be encouraged to seek medical advice if worrying psychological symptoms develop, especially if depressed mood or suicidal ideation is suspected. Patients/carers should be alert to possible psychiatric disturbances that may occur either during or immediately after dose tapering/withdrawal of systemic steroids, although such reactions have been reported infrequently.

Particular care is required when considering the use of systemic corticosteroids in patients with existing or previous history of severe affective disorders in themselves or in their first degree relatives. These would include depressive or manic-depressive illness and previous steroid psychosis.

Frequent patient monitoring is necessary in patients with existing or previous history of severe affective disorders (especially previous steroid psychosis).

Nervous System Effects

Corticosteroids should be used with caution in patients with seizure disorders. Frequent patient monitoring is necessary in patients with epilepsy.

Corticosteroids should be used with caution in patients with myasthenia gravis. (Also see myopathy statement in Musculoskeletal Effects section). Frequent patient monitoring is necessary in patients with myasthenia gravis.

Severe medical events have been reported in association with the intrathecal/epidural routes of administration (see section 4.8).

There have been reports of epidural lipomatosis in patients taking corticosteroids, typically with long-term use at high doses.

Ocular Effects

Visual disturbance may be reported with systemic and topical corticosteroid use. If a patient presents with symptoms such as blurred vision or other visual disturbances, the patient should be considered for referral to an ophthalmologist for evaluation of possible causes which may include cataract, glaucoma or rare diseases such as central serous chorioretinopathy (CSCR) which have been reported after use of systemic and topical corticosteroids. Central serous chorioretinopathy, may lead to retinal detachment.

Frequent patient monitoring is necessary in patients with glaucoma (or a family history of glaucoma) and in patients with ocular herpes simplex, for fear of corneal perforation.

Prolonged use of corticosteroids may produce posterior subcapsular cataracts and nuclear cataracts (particularly in children), exophthalmos, or increased intraocular pressure, which may result in glaucoma with possible damage to the optic nerves. Establishment of secondary fungal and viral infections of the eye may also be enhanced in patients receiving glucocorticoids.

Cardiac Effects

Adverse effects of glucocorticoids on the cardiovascular system, such as dyslipidemia and hypertension, may predispose treated patients with existing cardiovascular risk factors to additional cardiovascular effects, if high doses and prolonged courses are used. Accordingly, corticosteroids should be employed judiciously in such patients and attention should be paid to risk modification and additional cardiac monitoring if needed. Low dose and alternate day therapy may reduce the incidence of complications in corticosteroid therapy.

There have been a few reports of cardiac arrhythmias and/or circulatory collapse and/or cardiac arrest associated with the rapid intravenous administration of large doses of Methylprednisolone Sodium Succinate (greater than 500 mg administered over a period of less than 10 minutes). Bradycardia has been reported during or after the administration of large doses of methylprednisolone sodium succinate, and may be unrelated to the speed and duration of infusion.

Systemic corticosteroids should be used with caution, and only if strictly necessary, in cases of congestive heart failure.

Care should be taken for patients receiving cardioactive drugs such as digoxin because of steroid induced electrolyte disturbance/potassium loss (see section 4.8).

Frequent patient monitoring is necessary in patients with congestive heart failure or recent myocardial infarction (myocardial rupture has been reported).

Vascular Effects

Steroids should be used with caution in patients with hypertension. Frequent patient monitoring is necessary.

Thrombosis including venous thromboembolism has been reported to occur with corticosteroids. As a result, corticosteroids should be used with caution in patients who have or may be predisposed to thromboembolic disorders.

Gastrointestinal Effects

High doses of corticosteroids may produce acute pancreatitis.

There is no universal agreement on whether corticosteroids per se are responsible for peptic ulcers encountered during therapy; however, glucocorticoid therapy may mask the symptoms of peptic ulcer so that perforation or haemorrhage may occur without significant pain. Glucocorticoid therapy may mask peritonitis or other signs or symptoms associated with gastrointestinal disorders such as perforation, obstruction or pancreatitis.

In combination with NSAIDs, the risk of developing gastrointestinal ulcers is increased.

Particular care is required when considering the use of systemic corticosteroids in patients with the following conditions and frequent patient monitoring is necessary.

Ulcerative colitis

Perforation, Abscess or other pyogenic infections


Fresh intestinal anastomoses

Peptic ulceration

Hepatobiliary Effects

Drug induced liver injury including acute hepatitis or liver enzyme increase can result from cyclical pulsed IV methylprednisolone (usually at initial dose ≥ 1 g/day). Rare cases of hepatotoxicity have been reported. The time to onset can be several weeks or longer. In the majority of case reports resolution of the adverse events has been observed after treatment was discontinued. Therefore, appropriate monitoring is required.

Musculoskeletal Effects

Particular care is required when considering the use of systemic corticosteroids in patients with myasthenia gravis or osteoporosis (post-menopausal females are particularly at risk) and frequent patient monitoring is necessary.

Osteoporosis is a common but infrequently recognized adverse effect associated with a long-term use of large doses of glucocorticoid.

Renal and urinary disorders

Caution is required in patients with systemic sclerosis because an increased incidence of scleroderma renal crisis has been observed with corticosteroids, including methylprednisolone. Blood pressure and renal function (s-creatinine) should therefore be routinely checked. When renal crisis is suspected, blood pressure should be carefully controlled.

Particular care is required when considering the use of systemic corticosteroids in patients with renal insufficiency and frequent patient monitoring is necessary.


Average and large doses of hydrocortisone or cortisone can cause elevation of blood pressure, salt and water retention, and increased excretion of potassium. These effects are less likely to occur with the synthetic derivatives except when used in large doses. Dietary salt restriction and potassium supplementation may be necessary. All corticosteroids increase calcium excretion.

Injury, poisoning and procedural complications

Systemic corticosteroids are not indicated for, and therefore should not be used to treat, traumatic brain injury, a multicentre study revealed an increased mortality at 2 weeks and 6 months after injury in patients administered methylprednisolone sodium succinate compared to placebo. A causal association with methylprednisolone sodium succinate treatment has not been established.


Since complications of treatment with glucocorticoids are dependent on the size of the dose and the duration of treatment, a risk/benefit decision must be made in each individual case as to dose and duration of treatment as to whether daily or intermittent therapy should be used.

Co-treatment with CYP3A inhibitors, including cobicistat-containing products, is expected to increase the risk of systemic side-effects. The combination should be avoided unless the benefit outweighs the increased risk of systemic corticosteroid side-effects, in which case patients should be monitored for systemic corticosteroid side-effects (see section 4.5).

The lowest possible dose of corticosteroid should be used to control the condition under treatment and when reduction in dosage is possible, the reduction should be gradual.

Aspirin and non-steroidal anti-inflammatory agents should be used cautiously in conjunction with corticosteroids.

Pheochromocytoma crisis, which can be fatal, has been reported after administration of systemic corticosteroids. Corticosteroids should only be administered to patients with suspected or identified pheochromocytoma after an appropriate risk/benefit evaluation.

Paediatric population:

Growth and development of infants and children on prolonged corticosteroid therapy should be carefully observed. Growth may be suppressed in children receiving long-term, daily, divided-dose glucocorticoid therapy and use of such regimen should be restricted to the most urgent indications. Alternate-day glucocorticoid therapy usually avoids or minimizes this side effect.

Infants and children on prolonged corticosteroid therapy are at special risk from raised intracranial pressure.

High doses of corticosteroids may produce pancreatitis in children.

4.5 Interaction with other medicinal products and other forms of interaction

Methylprednisolone is a cytochrome P450 enzyme (CYP) substrate and is mainly metabolized by the CYP3A4 enzyme. CYP3A4 is the dominant enzyme of the most abundant CYP subfamily in the liver of adult humans. It catalyzes 6β-hydroxylation of steroids, the essential Phase I metabolic step for both endogenous and synthetic corticosteroids. Many other compounds are also substrates of CYP3A4, some of which (as well as other drugs) have been shown to alter glucocorticoid metabolism by induction (up-regulation) or inhibition of the CYP3A4 enzyme.

CYP3A4 INHIBITORS – Drugs that inhibit CYP3A4 activity generally decrease hepatic clearance and increase the plasma concentration of CYP3A4 substrate medications, such as methylprednisolone. In the presence of a CYP3A4 inhibitor, the dose of methylprednisolone may need to be titrated to avoid steroid toxicity.

CYP3A4 INDUCERS – Drugs that induce CYP3A4 activity generally increase hepatic clearance, resulting in decreased plasma concentration of medications that are substrates for CYP3A4. Co-administration may require an increase in methylprednisolone dosage to achieve the desired result.

CYP3A4 SUBSTRATES – In the presence of another CYP3A4 substrate, the hepatic clearance of methylprednisolone may be affected, with corresponding dosage adjustments required. It is possible that adverse events associated with the use of either drug alone may be more likely to occur with co-administration.

NON-CYP3A4-MEDIATED EFFECTS – Other interactions and effects that occur with methylprednisolone are described in Table 1 below.

Table 1 provides a list and descriptions of the most common and/or clinically important drug interactions or effects with methylprednisolone.

Table 1. Important drug or substance interactions/effects with methylprednisolone

Drug Class or Type


Macrolide Antibacterial






An increase in the plasma concentration of methylprednisolone may occur. The dose of methylprednisolone may need to be titrated to avoid steroid toxicity.

In addition, there is a potential effect of methylprednisolone to increase the acetylation rate and clearance of isoniazid.

Antibiotic, Antitubercular






A decrease in the plasma concentration of methylprednisolone may occur. Co-administration may require an increase in methylprednisolone dosage to achieve the desired result.









Pharmacokinetic enhancers


Calcium Channel Blocker


Contraceptives (oral)




Macrolide Antibacterial




The hepatic clearance of methylprednisolone may be inhibited or induced, resulting in an increase or decrease in the plasma concentration of methylprednisolone. A corresponding dosage adjustment may be required. It is possible that adverse events associated with the use of either drug alone may be more likely to occur with administration

1) Protease inhibitors, such as indinavir and ritonavir, may increase plasma concentrations of corticosteroids.

2) Corticosteroids may induce the metabolism of HIV protease inhibitors resulting in reduced plasma concentrations.





1) Mutual inhibition of metabolism occurs with concurrent use of ciclosprin and methylprednisolone, which may increase the plasma concentrations of either or both drugs. Therefore, it is possible that adverse events associated with the use of either drug alone may be more likely to occur upon co-administration.

2) Convulsions have been reported with concurrent use of methylprednisolone and ciclosporin.




The hepatic clearance of methylprednisolone may be inhibited or induced, resulting in an increase or decrease in the plasma concentration of methylprednisolone. A corresponding dosage adjustment may be required. It is possible that adverse events associated with the use of either drug alone may be more likely to occur with administration.





The hepatic clearance of methylprednisolone may be inhibited or induced, resulting in an increase or decrease in the plasma concentration of methylprednisolone. A corresponding dosage adjustment may be required. It is possible that adverse events associated with the use of either drug alone may be more likely to occur with administration.

Anticoagulants (oral)Non-CYP3A4-mediated effectsThe effect of methylprednisolone on oral anticoagulants is variable. There are reports of enhanced as well as diminished effects of anticoagulants when given concurrently with corticosteroids. Therefore, coagulation indices should be monitored to maintain the desired anticoagulant effects.


Corticosteroids may influence the effect of anticholinergics.

1) An acute myopathy has been reported with the concomitant use of high doses of corticosteroids and anticholinergics, such as neuromuscular blocking drugs. (See section 4.4, Musculoskeletal, for additional information.)

2) Antagonism of the neuromuscular blocking effects of pancuronium and vecuronium has been reported in patients taking corticosteroids. This interaction may be expected with all competitive neuromuscular blockers.

AnticholinesterasesSteroids may reduce the effects of anticholinesterases in myasthenia gravis.
Anti-diabeticsBecause corticosteroids may increase blood glucose concentrations, dosage adjustments of anti-diabetic agents may be required.
Aromatase inhibitors


Aminoglutethimide-induced adrenal suppression may exacerbate endocrine changes caused by prolonged glucocorticoid treatment.
NSAIDs (non-steroidal anti-inflammatory drugs)

– high-dose ASPIRIN

(acetylsalicylic acid)

1) There may be increased incidence of gastrointestinal bleeding and ulceration when corticosteroids are given with NSAIDs.

2) Methylprednisolone may increase the clearance of high-dose aspirin, which can lead to decreased salicylate serum levels. Discontinuation of methylprednisolone treatment can lead to raised salicylate serum levels, which could lead to an increased risk of salicylate toxicity.

Potassium depleting agentsWhen corticosteroids are administered concomitantly with potassium depleting agents (e.g. diuretics) patients should be observed closely for development of hypokalaemia.

Corticosteroids antagonize the diuretic effect of diuretics.

There is also an increased risk of hypokalaemia with concurrent use of corticosteroids with amphotericin B, xanthines, or beta2 agonists.

Corticosteroids antagonize the hypotensive effect of all antihypertensives.

There is an increased risk of hypokalaemia when corticosteroids are given with cardiac glycosides.

The effects of corticosteroids may be reduced for 3-4 days after mifepristone.


To avoid compatibility and stability problems, it is recommended that methylprednisolone sodium succinate be administered separately from other compounds that are administered via the IV route of administration. Drugs that are physically incompatible in solution with methylprednisolone sodium succinate include allopurinol sodium, doxapram hydrochloride, tigecycline, diltiazem hydrochloride, calcium gluconate, vecuronium bromide, rocuronium bromide, cisatracurium besylate, glycopyrrolate and propofol. (See section 6.2 for additional information.)

4.6 Fertility, pregnancy and lactation


Corticosteroids have been shown to impair fertility in animal studies (see section 5.3). In women treatment with corticosteroids can lead to menstrual irregularities.


The ability of corticosteroids to cross the placenta varies between individual drugs, however, methylprednisolone does cross the placenta.

Administration of corticosteroids to pregnant animals can cause abnormalities of foetal development including cleft palate, intra-uterine growth retardation and effects on brain growth and development. There is no evidence that corticosteroids result in an increased incidence of congenital abnormalities, such as cleft palate in man, however, when administered for long periods or repeatedly during pregnancy, corticosteroids may increase the risk of intra-uterine growth retardation. Hypoadrenalism may, in theory, occur in the neonate following pre-natal exposure to corticosteroids but usually resolves spontaneously following birth and is rarely clinically important. Infants born to mothers, who have received substantial doses of corticosteroids during pregnancy must be carefully observed and evaluated for signs of adrenal insufficiency. As with all drugs, corticosteroids should only be prescribed when the benefits to the mother and child outweigh the risks. When corticosteroids are essential, however, patients with normal pregnancies may be treated as though they were in the non-gravid state.

Since adequate human reproductive studies have not been done with methylprednisolone sodium succinate, this medicinal product should be used during pregnancy only after a careful assessment of the benefit-risk ratio to the mother and foetus.

In humans, the risk of low birth weight appears to be dose related and may be minimized by administering lower corticosteroid doses.

Cataracts have been observed in infants born to mothers undergoing long-term treatment with corticosteroids during pregnancy.


Corticosteroids are excreted in small amounts in breast milk, however, doses of up to 40 mg daily of methylprednisolone are unlikely to cause systemic effects in the infant. This medicinal product should be used during breast feeding only after a careful assessment of the benefit-risk ratio to the mother and infant.

4.7 Effects on ability to drive and use machines

The effect of corticosteroids on the ability to drive or use machinery has not been systematically evaluated. Undesirable effects, such as dizziness, vertigo, visual disturbances, and fatigue are possible after treatment with corticosteroids. If affected, patients should not drive or operate machinery.

4.8 Undesirable effects

The following adverse reactions have been reported with the following routes of administration: Intrathecal/Epidural: Arachnoiditis, functional gastrointestinal disorder/bladder dysfunction, headache, meningitis, paraparesis/paraplegia, seizure and sensory disturbances.

Under normal circumstances Methylprednisolone Sodium Succinate therapy would be considered as short-term. However, the possibility of side-effects attributable to corticosteroid therapy should be recognised, particularly when high-dose therapy is being used (see section 4.4). Such side-effects include:


System Organ Class

Frequency†Undesirable Effects
Infections and infestationsNot KnownInfection (including increased susceptibility and severity of infections with suppression of clinical symptoms and signs); Opportunistic infection; Recurrence of dormant tuberculosis (see section 4.4); Peritonitis#
Neoplasms benign, malignant and unspecified (including cysts and polypsNot KnownKaposi’s sarcoma has been reported to occur in patients receiving corticosteroid therapy. Discontinuation of corticosteroids may result in clinical remission.
Blood and lymphatic system disordersNot KnownLeukocytosis.
Immune system disordersNot KnownDrug hypersensitivity (Anaphylactic reaction; Anaphylactoid reaction).
Endocrine disordersNot KnownCushingoid; Hypopituitarism (including suppression of the hypothalamo-pituitary-adrenal axis); Steroid withdrawal syndrome (including, fever, myalgia, arthralgia, rhinitis, conjunctivitis, painful itchy skin nodules and loss of weight).
Metabolism and nutrition disordersNot KnownMetabolic acidosis; Sodium retention; Fluid retention; Glucose tolerance impaired; Alkalosis hypokalaemic; Dyslipidemia; Increased insulin requirements (or oral hypoglycemic agents in diabetics); Lipomatosis; Increased appetite (which may result in weight increase); Epidural lipomatosis.
Psychiatric disordersNot KnownA wide range of psychiatric reactions including affective disorders (such as irritable, euphoric, depressed and labile mood, drug dependence and suicidal thoughts), psychotic reactions (including mania, delusions, hallucinations and schizophrenia), behavioural disturbances, irritability, anxiety, sleep disturbances, and cognitive dysfunction including confusion and amnesia have been reported for all corticosteroids. Reactions may occur in both adults and children. In adults, the frequency of severe reactions was estimated to be 5%-6%. Psychological effects have been reported on withdrawal of corticosteroids; the frequency is unknown.
Nervous system disordersNot KnownIncreased intracranial pressure with Papilloedema [Benign intracranial hypertension]; Seizure; Amnesia; Cognitive disorder; Dizziness; Headache.
Eye disordersRareVision blurred (see also section 4.4);
Not KnownPosterior subcapsular cataracts; Exophthalmos; Glaucoma; Papilloedema with possible damage to the optic nerve; Corneal or scleral thinning; Exacerbation of ophthalmic viral or fungal disease; Chorioretinopathy.
Ear and labyrinth disordersNot KnownVertigo.
Cardiac disordersNot KnownCongestive heart failure in susceptible patients; Arrhythmia.
Vascular disordersNot KnownHypertension; Hypotension; Thrombotic events.
Respiratory, thoracic and mediastinal disordersNot KnownHiccups; Pulmonary embolism.
Gastrointestinal disordersNot KnownPeptic ulcer (with possible peptic ulcer perforation and peptic ulcer haemorrhage); Gastric haemorrhage; Intestinal perforation; Pancreatitis; Ulcerative oesophagitis; Oesophagitis; Oesophageal candidiasis; Abdominal pain; Abdominal distension; Diarrhoea; Dyspepsia; Nausea; Vomiting; Bad taste in mouth may occur especially with rapid administration.
Hepatobiliary disordersNot KnownHepatitis†; Increase of liver enzymes (e.g. alanine aminotransferase increased (ALT, SGPT), aspartate aminotransferase increased (AST, SGOT)).
Skin and subcutaneous tissue disordersNot KnownEcchymosis; Skin atrophy (thin fragile skin); Acne; Angioedema; Petechiae; Skin striae; Telangiectasia; Skin hypopigmentation or hyperpigmentation; Hirsutism; Rash; Erythema; Pruritus; Urticaria; Hyperhidrosis.
Musculoskeletal and connective tissue disordersNot KnownGrowth retardation; Osteoporosis; Muscular weakness; Osteonecrosis; Pathological fracture; Muscle atrophy; Myopathy; Neuropathic arthropathy; Arthralgia; Myalgia.
Reproductive system and breast disordersNot KnownIrregular menstruation; Amenorrhoea.
General disorders and administration site conditionsNot KnownImpaired wound healing; Oedema peripheral; Injection site reaction; Fatigue; Malaise; Withdrawal symptoms – Too rapid a reduction of corticosteroid dosage following prolonged treatment can lead to acute adrenal insufficiency, hypotension and death. However, this is more applicable to corticosteroids with an indication where continuous therapy is given (see section 4.4).
InvestigationsNot KnownIntraocular pressure increased; Carbohydrate tolerance decreased; Blood potassium decreased (potassium loss); Urine calcium increased; Blood alkaline phosphatase increased; Blood urea increased; Suppression of reactions to skin tests.
Injury, poisoning and procedural complicationsNot KnownTendon rupture (particularly of the Achilles tendon); Spinal compression fracture (vertebral compression fractures).

† Common (≥1/100 to <1/10); Uncommon (≥1/1,000 to <1/100); Rare (≥1/10,000 to <1/1,000); Not known (frequency cannot be estimated from the available data)

† Hepatitis has been reported with IV administration (see section 4.4).

# Peritonitis may be the primary presenting sign or symptom of a gastrointestinal disorder such as perforation, obstruction or pancreatitis (see section 4.4).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important.

4.9 Overdose

There is no clinical syndrome of acute overdosage with corticosteroids. Reports of acute toxicity and/or death following overdosage of corticosteroids are rare. In the event of overdosage, no specific antidote is available; treatment is supportive and symptomatic. Methylprednisolone is dialysable. Following chronic overdosage the possibility of adrenal suppression should be guarded against by gradual diminution of dose levels over a period of time. In such event the patient may require to be supported during any further stressful episode.

  1. Pharmacological properties

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Glucocorticoids.

Methylprednisolone is a corticosteroid with an anti-inflammatory activity at least five times that of hydrocortisone. An enhanced separation of glucocorticoid and mineralocorticoid effect results in a reduced incidence of sodium and water retention.

5.2 Pharmacokinetic properties

Methylprednisolone pharmacokinetics is linear, independent of route of administration.


Methylprednisolone is widely distributed into the tissues, crosses the blood-brain barrier, and is secreted in breast milk. Its apparent volume of distribution is approximately 1.4 L/kg. The plasma protein binding of methylprednisolone in humans is approximately 77%.


Methylprednisolone is extensively bound to plasma proteins, mainly to globulin and less so to albumin. Only unbound corticosteroid has pharmacological effects or is metabolised. Metabolism occurs in the liver and to a lesser extent in the kidney. In humans, methylprednisolone is metabolized in the liver to inactive metabolites; the major ones are 20α-hydroxymethylprednisolone and 20β-hydroxymethylprednisolone.

Metabolism in the liver occurs primarily via the CYP3A4. (For a list of drug interactions based on CYP3A4-mediated metabolism, see section 4.5).

Methylprednisolone, like many CYP3A4 substrates, may also be a substrate for the ATP-binding cassette (ABC) transport protein p-glycoprotein, influencing tissue distribution and interactions with other medicines.


Metabolites are excreted in the urine.

The mean elimination half-life for total methylprednisolone is in the range of 1.8 to 5.2 hours. Total clearance is approximately 5 to 6 mL/min/kg. Mean elimination half-life ranges from 2.4 to 3.5 hours in normal healthy adults and appears to be independent of the route of administration.

Total body clearance following intravenous or intramuscular injection of methylprednisolone to healthy adult volunteers is approximately 15-16 L/hour. Peak methylprednisolone plasma levels of 33.67 micrograms/100 ml were achieved in 2 hours after a single 40 mg I.M. injection to 22 adult male volunteers.

5.3 Preclinical safety data

Based on conventional studies of safety pharmacology and repeated dose toxicity, no unexpected hazards were identified. The toxicities seen in the repeated-dose studies were those expected to occur with continued exposure to exogenous adrenocortical steroids.

Mutagenic potential:

Methylprednisolone has not been formally evaluated for genotoxicity. Studies using structurally related analogues of methylprednisolone showed no evidence of a potential for genetic and chromosome mutations in limited studies in bacteria and mammalian cells.

Carcinogenic potential:

Methylprednisolone has not been formally evaluated in rodent carcinogenicity studies. Variable results have been obtained with other glucocorticoids tested for carcinogenicity in mice and rats. However, published data indicate that several related glucocorticoids including budesonide, prednisolone, and triamcinolone acetonide can increase the incidence of hepatocellular adenomas and carcinomas after oral administration in drinking water to male rats. These tumorigenic effects occurred at doses which were less than the typical clinical doses on a mg/m2 basis. The clinical relevance of these findings is unknown.

Reproductive toxicity:

Methylprednisolone has not been evaluated in animal fertility studies. Corticosteroids have been shown to reduce fertility when administered to rats. Adverse effects on fertility in male rats administered corticosterone were observed and were reversible. Decreased weights and microscopic changes in prostate and seminal vesicles were observed. The numbers of implantations and live foetuses were reduced and these effects were not present following mating at the end of the recovery period.

An increased frequency of cleft palate was observed among the offspring of mice treated during pregnancy with methylprednisolone in doses similar to those typically used for oral therapy in humans.

An increased frequency of cardiovascular defects and decreased body weight were observed among the offspring of pregnant rats treated with methylprednisolone in a dose that was similar to that used for oral therapy in humans but was toxic to the mothers. In contrast, no teratogenic effect was noted in rats with doses <1-18 times those typically used for oral therapy in humans in another study. High frequencies of foetal death and a variety of central nervous system and skeletal anomalies were reported in the offspring of pregnant rabbits treated with methylprednisolone in doses less than those used in humans. The relevance of these findings to the risk of malformations in human infants born to mothers treated with methylprednisolone in pregnancy is unknown. Safety margins for the reported teratogenic effects are unknown.

  1. Pharmaceutical particulars

6.1 List of excipients

Sodium biphosphate

Sodium phosphate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

Shelf-life of the medicinal product as packaged for sale: 5 years.

After reconstitution with Sterile Water for Injections, use immediately, discard any remainder.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

Refer to section 4.2. No diluents other than those referred to are recommended. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration.

6.5 Nature and contents of container

Type I clear glass vial with butyl rubber plug and flip top seal.

Each vial of Methylprednisolone Sodium Succinate 1 g contains the equivalent of 1 g of methylprednisolone as the sodium succinate for reconstitution with 15.6 ml of Sterile Water for Injections.

7.Manufactured in India by:
Mumbai, India
Unit No. 214.Old Bake House,
Maharashtra chambers of Commerce Lane,
Fort, Mumbai – 400001
at:Gujarat, INDIA.
Customer Service and Product Inquiries:
1-800-TRY-FIRST (1-800-222-434 & 1-800-222-825)
Monday through Saturday 9:00 a.m. to 7:00 p.m. EST
E-mail: tajgroup@tajpharma.com

Methylprednisolone Sodium Succinate for Injection USP 40mg Taj Pharma.
Methylprednisolone Sodium Succinate for Injection USP 125mg Taj Pharma.

Methylprednisolone Sodium Succinate for Injection USP 500mg Taj Pharma.
Methylprednisolone Sodium Succinate for Injection USP 1g  Taj Pharma.

Package leaflet: Information for the patient

Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.

  • Keep this leaflet. You may need to read it
  • If you have any further questions, ask your doctor or
  • If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section
What is in this leaflet
  1. What Methylprednisolone Sodium Succinate is and what it is used for
  2. What you need to know before you are given Solu-Medrone
  3. How Methylprednisolone Sodium Succinate is given to you
  4. Possible side effects
  5. How to store Solu-Medrone
  6. Contents of the pack and other information


  1. What Methylprednisolone Sodium Succinate is and what it is used for

Methylprednisolone Sodium Succinate contains methylprednisolone sodium succinate. Methylprednisolone belongs to a group of medicines called corticosteroids (steroids). Corticosteroids are produced naturally in your body and are important for many body functions.

Boosting your body with extra corticosteroid such as Methylprednisolone Sodium Succinate can help following surgery (e.g. organ transplants), flare-ups of the symptoms of multiple sclerosis or other stressful conditions.

These include inflammatory or allergic conditions affecting the:

  • brain caused by a tumour or tuberculosis meningitis
  • bowel and gut g. ‘Crohn’s disease’ and ‘ulcerative colitis’
  • lungs caused by asthma, severe allergy or hypersensitivity, tuberculosis or breathing in (aspirating) vomit or stomach contents
  • skin g. Stevens-Johnson Syndrome.

Methylprednisolone Sodium Succinate may be prescribed to treat conditions other than those listed above.

Talk to your doctor if you are unsure why you have been given this medicine, if you do not feel better or if you feel worse.

2. What you need to know before you are given Methylprednisolone Sodium Succinate

Do not use Solu-Medrone:

  • If you think you have ever suffered an allergic reaction, or any other type of reaction after being given Solu-Medrone, or any other medicine containing a corticosteroid or any of the ingredients in this medicine (listed in section 6). An allergic reaction may cause a skin rash or reddening, swollen face or lips or shortness of
  • If you have any known or suspected allergy to cow’s milk or its components or other dairy products, tell your doctor before taking this medicine as it may contain trace amounts of milk ingredients.
  • If you have a widespread fungal infection (such as thrush) which is not being
  • If you have recently had, or are about to have any vaccination.
  • If you are suffering from, or receiving treatment for, swelling of the brain, due to
  • If you are suffering from a traumatic brain injury or stroke.
See your doctor immediately if any of the above applies to you. Warnings and precautions

Talk to your doctor or pharmacist before taking this medicine if you have any of the following conditions.

Your doctor may have to monitor your treatment more closely, alter your dose or give you another medicine.

  • Chickenpox, measles, shingles or a herpes eye infection. If you think you have been in contact with someone with chickenpox, measles or shingles and you have not already had these illnesses, or if you are unsure if you have had
  • Worm infestation (e.g. threadworm).
  • Severe depression or manic depression (bipolar disorder). This includes having had depression before while taking steroid medicines like Solu-Medrone, or having a family history of these
  • Diabetes (or if there is a family history of diabetes).
·    Epilepsy, fits or seizures.
  • Glaucoma (increased pressure in the eye) or if there is a family history of
  • Contact your doctor if you experience blurred vision or other visual disturbances.
  • You have recently suffered a heart attack.
  • Heart problems, including heart failure or
  • Hypertension (high blood pressure).
  • Hypothyroidism (an under-active thyroid).
·  Joint infection.
  • Kaposi’s sarcoma (a type of skin cancer).
  • Kidney or liver
  • Scleroderma (also known as systemic sclerosis, an autoimmune disorder), because the risk of a serious complication called scleroderma renal crisis may be
  • Muscle problems (pain or weakness) have happened while taking steroid medicines in the past.
  • Myasthenia gravis (a condition causing tired and weak muscles).
  • Osteoporosis (brittle bones).
  • Pheochromocytoma (a rare tumour of adrenal gland tissue. The adrenal glands are located above the kidneys).
·   Skin abscess.
  • Stomach ulcer, diverticulitis (inflammation of the bowel wall) or other serious stomach or intestinal problems.
  • Thrombophlebitis – vein problems due to thrombosis (clots in the veins) resulting in phlebitis (red, swollen and tender veins).
  • Tuberculosis (TB) or if you have suffered tuberculosis in the
  • Unusual
  • Cushing’s disease (condition caused by an excess of cortisol hormone in your body).
  • Acute pancreatitis (inflammation of the pancreas).

Methylprednisolone Sodium Succinate should not be used in the treatment of septic shock.

Methylprednisolone Sodium Succinate 40mg contains cow’s milk proteins

If you are allergic or suspected to be allergic to cow’s milk, you must not be given this medicine as it may contain trace amounts of cow’s milk proteins. Serious allergic reactions have occurred in patients allergic to cow’s milk.

Other medicines and Solu-Medrone

Tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines (including any you have obtained without a prescription).

This could be harmful or affect the way Methylprednisolone Sodium Succinate or the other medicine works:

  • Acetazolamide – used to treat glaucoma and epilepsy
  • Aminoglutethimide or Cyclophosphamide – used for treating cancer
  • Anticoagulants – used to ‘thin’ the blood such as acenocoumarol, phenindione and warfarin
  • Anticholinesterases – used to treat myasthenia gravis (a muscle condition) such as distigmine and neostigmine
  • Antibiotics (such as erythromycin, clarithromycin or troleandomycin)
  • Antidiabetics – medicines used to treat high blood sugar
  • Antihypertensives – medicines used to lower blood pressure
  • Aprepitant and Fosaprepitant – used to prevent nausea and vomiting
  • Aspirin and non-steroidal anti-inflammatory medicines (also called NSAIDs) such as ibuprofen used to treat mild to moderate pain
  • Barbiturates, carbamazepine, phenytoin and primidone – used to treat epilepsy
  • Carbenoxolone and cimetidine – used for heartburn and acid indigestion
  • Ciclosporin – used to treat conditions such as severe rheumatoid arthritis, severe psoriasis or following an organ or bone marrow transplant
  • Digoxin – used for heart failure and/or an irregular heart beat
  • Diltiazem or mibefradil – used for heart problems or high blood pressure
  • Ethinylestradiol and norethisterone – an oral contraceptive
  • Antivirals (such as ritonavir, indinavir) and pharmacokinetic enhancers (such as cobicistat) used to treat HIV infections
  • Isoniazid – used to treat bacterial infections
  • Ketoconazole or itraconazole – used to treat fungal infections
  • Mifepristone – used for the medical termination of a pregnancy
  • Pancuronium or vercuronium – or other medicines called neuromuscular blocking agents which are used in some surgical procedures
  • Potassium depleting agents – such as diuretics (sometimes called water tablets),

amphotericin B, xanthenes or beta2 agonists (e.g. medicines used to treat asthma)

  • Rifampicin and rifabutin – antibiotics used to treat tuberculosis (TB)
  • Tacrolimus – used following an organ transplant to prevent rejection of the organ
  • Vaccines – tell your doctor or nurse if you have recently had, or are about to have any vaccination. You should not have ‘live’ vaccines while using this medicine. Other vaccines may be less
If you are taking long term medication(s)

If you are being treated for diabetes, high blood pressure or water retention (oedema) tell your doctor as he/she may need to adjust the dose of the medicines used to treat these conditions.

Before you have any operation, tell your doctor, dentist or anaesthetist that you are taking Solu- Medrone.

If you require a test to be carried out by your doctor or in hospital it is important that you tell the doctor or nurse that you are taking Solu-Medrone. This medicine can affect the results of some tests.

Methylprednisolone Sodium Succinate with drink

Do not drink grapefruit juice while taking this medicine.

Pregnancy and breast-feeding

If you are pregnant, think you may be pregnant or are planning to have a baby, ask your doctor or pharmacist for advice before taking this medicine, as it could slow the baby’s growth. There is a risk of low birth weight of a baby; this risk can be minimised by taking the lowest effective dose of the corticosteroids.

Cataracts have been observed in infants born to mothers undergoing long-term treatment with corticosteroids during pregnancy.

If you are breast-feeding, ask your doctor or pharmacist for advice, as small amounts of corticosteroid medicines may get into breast milk.

Driving and using machines

Undesirable effects, such as dizziness, vertigo, visual disturbances and fatigue are possible after treatment with corticosteroids. If you are affected do not drive or operate machinery.

  1. How Methylprednisolone Sodium Succinate is given to you

Steroid Cards

Remember to always carry a Steroid Treatment Card. Make sure your doctor or pharmacist has filled out the details of your medicine, including the dose and how long you will require steroid treatment.

You should show your steroid card to anyone who gives you treatment (such as a doctor, nurse or dentist) while you are taking this medicine, and for 3 months after your last injection.

If you are admitted to hospital for any reason always tell your doctor or nurse that you are taking Solu- Medrone. You can also wear a medic-alert bracelet or pendant to let medical staff know that you are taking a steroid if you have an accident or become unconscious.

Dosage information

Your doctor will decide on the site of injection, how much of the medicine and how many injections you will receive depending on the condition being treated and its severity. Your doctor will inject you with the lowest dose for the shortest possible time to get effective relief of your symptoms.


Methylprednisolone Sodium Succinate will be given as an injection by your doctor or nurse, either into a vein (intravenous) or into a muscle (intramuscular). Usually the first dose is given into a vein, especially in an emergency.

It will be given slowly over at least 5 minutes. For larger doses this may take 30 minutes or more. Large doses should normally be used for only two to three days.

The medicine is first dissolved in Sterile Water for Injections. If the medicine is to be given by infusion (using a pump or drip) it is then mixed with another suitable fluid. No other medicines should be mixed with it.


Treatment will normally be the same as for younger adults. However your doctor may want to see you more regularly to check how you are getting on with this medicine.

Children and adolescents

Corticosteroids can affect growth in children so your doctor will prescribe the lowest dose that will be effective for your child.

If you are given more Methylprednisolone Sodium Succinate than you should

If you think you have been given too many injections of Methylprednisolone Sodium Succinate please speak to your doctor immediately.

Stopping/reducing the dose of your Solu-Medrone

Your doctor will decide when it is time to stop your treatment. You will need to come off this treatment slowly if you:

  • have had repeated doses of corticosteroids for more than 3 weeks
  • have been given high doses of Solu-Medrone, over 32 mg daily, even if it was only for 3 weeks or less
  • have already had a course of corticosteroid tablets or injections in the last year
  • already had problems with your adrenal glands (adrenocortical insufficiency) before you started this

You will need to come off this medicine slowly to avoid withdrawal symptoms. These symptoms may include itchy skin, fever, muscle and joint pains, runny nose, sticky eyes, sweating and weight loss.

If your symptoms seem to return or get worse as your dose of this medicine is reduced tell your doctor immediately.

Mental problems while taking Solu-Medrone

Mental health problems can happen while taking steroids like Methylprednisolone Sodium Succinate (see section 4).

  • These illnesses can be
  • Usually they start within a few days or weeks of starting the
  • They are more likely to happen at high
  • Most of these problems go away if the dose is lowered or the medicine is stopped. However if the problems do happen they might need

Talk to a doctor if you (or someone using this medicine) shows any signs of mental problems. This is particularly important if you are depressed, or might be thinking about suicide. In a few cases mental problems have happened when doses are being lowered or stopped.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them. Your doctor will have given you this medicine for a condition which if not treated properly could become serious.

In certain medical conditions medicines like Methylprednisolone Sodium Succinate (steroids) should not be stopped abruptly. If you suffer from any of the following symptoms seek IMMEDIATE medical attention. Your doctor will then decide whether you should continue taking your medicine:
  • Allergic reactions, such as skin rash, swelling of the face or wheezing and difficulty breathing. This type of side effect is rare, but can be
  • Pancreatitis, stomach pain spreading to your back, possibly accompanied by vomiting, shock and loss of consciousness.
  • Burst or bleeding ulcers, symptoms of which are stomach pain (especially if it seems to spread to your back), bleeding from the back passage, black or bloodstained stools and/or vomiting
  • This medicine can hide or change the signs and symptoms of some infections, or reduce your resistance to the infection, so that they are hard to diagnose at an early stage. Symptoms might include a raised temperature and feeling unwell. Symptoms of a flare up of a previous TB infection could be coughing blood or pain in the chest. Symptoms of a previous malaria infection could involve chills and fever. Methylprednisolone Sodium Succinate may also make you more likely to develop a severe infection.
  • Pulmonary embolus (blood clots in the lung), symptoms include sudden sharp chest pain, breathlessness and coughing up
  • Raised pressure within the skull of children (pseudotumour cerebri) symptoms of which are headaches with vomiting, lack of energy and drowsiness. This side effect usually occurs after treatment is stopped.
  • Thrombophlebitis (blood clots or thrombosis in a leg vein), symptoms of which include painful swollen, red and tender
If you experience any of the following side effects, or notice any other unusual effects not mentioned in this leaflet, tell your doctor straight away.

The side effects may occur with certain frequencies, which are defined as follows:

  • rare: may affect up to 1 in 1,000
  • not known: frequency cannot be estimated from the available
Blood, heart and circulation

not known

  • High blood pressure, symptoms of which are headaches, or generally feeling
  • Problems with the pumping of your heart (heart failure) symptoms of which are swollen ankles, difficulty in breathing and palpitations (awareness of heart beat) or irregular beating of the heart, irregular or very fast or slow
  • Low blood pressure symptoms may include dizziness, fainting, lightheadedness, blurred vision, a rapid, or irregular heartbeat (palpitations), general
  • Increased numbers of white blood cells (leukocytosis).
Body water and salts

not known

  • Swelling and high blood pressure, caused by increased levels of water and salt
  • Cramps and spasms, due to the loss of potassium from your body. In rare cases this can lead to congestive heart failure (when the heart cannot pump properly).
Digestive system

not known

  • Nausea (feeling sick) or vomiting (being sick).
  • Thrush in the gullet (discomfort on swallowing).
  • Bloated
  • Abdominal pain.


not known

  • A feeling of dizziness or spinning (vertigo).


  • Blurred

not known

  • Cataracts (indicated by failing eyesight).
  • Glaucoma (raised pressure within the eye, causing pain in the eyes and headaches).
  • Swollen optic nerve (papilloedema, indicated by sight disturbance).
  • Thinning of the clear part at the front of the eye (cornea) or of the white part of the eye (sclera).
  • Worsening of viral or fungal eye
  • Protruding of the eyeballs (exophthalmos).
  • Blurred vision (chorioretinopathy).
General disorders

not known

  • Poor wound
  • Feeling tired or
  • Skin reactions at the site of
Hormones and metabolic system

not known

  • Slowing of normal growth in infants, children and adolescents which may be
  • Round or moon-shaped face (Cushingoid facies).
  • Irregular or no periods in
  • Increased appetite and weight
  • Diabetes or worsening of existing
  • Prolonged therapy can lead to lower levels of some hormones which in turn can cause low blood pressure and dizziness. This effect may persist for
  • The amount of certain chemicals (enzymes) called alanine transaminase, aspartate transaminase and alkaline phosphatase that help the body digest drugs and other substances in your body may be raised after treatment with a corticosteroid. The change is usually small and the enzyme levels return to normal after your medicine has cleared naturally from your system. You will not notice any symptoms if this happens, but it will show up if you have a blood
  • Accumulation of fat tissue on localised parts of the body, manifesting as different presentations for example back pain or weakness (due to epidural lipomatosis).
Immune system

not known

  • Increased susceptibility to
  • Suppression of reactions to skin tests, such as that for
Muscles and bones

not known

  • Brittle bones (bones that break easily).
  • Muscle
  • Muscle
  • Broken bones or
  • Breakdown of bone due to poor circulation of blood, this causes pain in the
  • Torn muscle tendons causing pain and/or
  • Muscle cramps or
Nerves and mood issues

not known

Steroids including methylprednisolone can cause serious mental health problems.

  • Feeling depressed, including thinking about
  • Feeling high (mania) or moods that go up and
  • Feeling anxious, having problems sleeping, difficulty in thinking or being confused and losing your
  • Feeling, seeing or hearing things which do not exist. Having strange and frightening thoughts, changing how you act or having feelings of being

not known

  • Thinning of skin (skin atrophy).
  • Stretch marks (skin striae).
  • Small purple/red patches on the
  • Pale or darker patches on your skin, or raised patches which are an unusual
  • Excessive growth of bodily and facial
  • Rash, itching,
  • Increased
Liver disorder

not known

  • Methylprednisolone can damage your liver; hepatitis and increase of liver enzymes have been reported.
Vascular disorders

not known

  • Increased clotting of the

If you experience any of the side effects listed above tell your doctor straight away. Reporting of side effects

If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet.

  1. How to store Solu-Medrone

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the label and carton after EXP. The expiry date refers to the last day of that month.

40 mg

This medicine must be stored below 25°C.

125 mg, 500 mg and 1 gram

This medicinal product does not require any special storage conditions.

Once the medicine has been mixed with Sterile Water for Injections the solution should be used straight away. Any unused liquid should be disposed of safely.

Your doctor will check that the solution contains no particles and is not discoloured before using it.

  1. Contents of the pack and other information

What Methylprednisolone Sodium Succinate contains

This medicine contains the following amounts of methylprednisolone sodium succinate as the active ingredient:

40 mg vial: 53 mg methylprednisolone sodium succinate (equivalent to 40 mg methylprednisolone)

125 mg vial: 165.8 mg methylprednisolone sodium succinate (equivalent to 125 mg methylprednisolone) 500 mg vial: 663 mg methylprednisolone sodium succinate (equivalent to 500 mg methylprednisolone)   1 g vial: 1.326 g methylprednisolone sodium succinate (equivalent to 1 g methylprednisolone)

Methylprednisolone Sodium Succinate also contains the inactive ingredients sodium biphosphate and sodium phosphate.

The 40 mg vial also contains lactose monohydrate produced from cow’s milk (see section 2, Do not use Solu-Medrone).

What Methylprednisolone Sodium Succinate looks like and contents of the pack

Methylprednisolone Sodium Succinate is a powder which comes in a clear glass vial fitted with a rubber stopper. Each pack also contains a vial of Sterile Water for Injections.

7.Manufactured in India by:
Mumbai, India
Unit No. 214.Old Bake House,
Maharashtra chambers of Commerce Lane,
Fort, Mumbai – 400001
at:Gujarat, INDIA.
Customer Service and Product Inquiries:
1-800-TRY-FIRST (1-800-222-434 & 1-800-222-825)
Monday through Saturday 9:00 a.m. to 7:00 p.m. EST
E-mail: tajgroup@tajpharma.com